Sketch inference
as a theory

of visual contour computation

Jonas August

Robotics Institute
Carnegie Mellon University



Acknowledgements
Steve Zucker (advisor at Yale)
Nick Hengartner (LANL, Yale)
Vliadimir Rokhlin (Yale)
David Mumford (Brown)
Lance Williams (UNM)
Karvel Thornber (NEC)

Takeo Kanade (CMU)



Application:
Sketch Enhancement




Application:
Reducing Fluoroscopic Exposures

[Viergever et all



Application:

Finding Roads and Rivers
iIn Satellite Imagery




Images with Contours

Local edge & line measurements




Original (No corruption) With Blur and Noise




Original (No corruption) With Blur and Noise
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Goal: Sketch Inference

Fusion of Differential Geometry and Random Fields
by Eliminating Curve Parameterization



Goal: Sketch Inference

Fusion of Differential Geometry and Random Fields
by Eliminating Curve Parameterization

Outline

Background

Direction Process

The Curve Indicator Random Field 4+ All Cumulants

Empirical Edge Statistics



e Curvature Process and Euler Spirals

e \Volterra Filters and Partial Differential Equations
for Enhancing Curve Images



Inference for a Single Contour

e Dynamic programming [Montanari '71; Sha'ashu & Ullman '88]

e Heuristic search [Martelli '76]

e Bayesian [Geman & Jedynak '96, Yuille & Coughlan '00]



Inference for Multiple Contours

e Local edge detection 4 linking (non-contextual)

e Context via local interactions:
— MRFs [Geman & Geman; Marroquin]
— Energy-based [Mumford& Shah, Nitzberg et al, Williams]
— Dictionary-based relaxation labeling [Hancock et al]

— Relaxation labeling with co-circularity
[Zucker,Parent,Iverson]

e EXxplicit parameterizations and MCMC simulation [Zhu et al]



Images with Contours
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Sketch Realizations



Inferring a Sketch

U; = underlying random field (ideal sketch)

(“indicates” curve at 1 = (z,y,0))

M; = measurement random field
(corrupted form of U;, i.e., from local edge operator,

e.g. image gradient)
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Inferring a Sketch

U; = underlying random field (ideal sketch)

(“indicates” curve at 1 = (z,y,0))

M; = measurement random field
(corrupted form of U;, i.e., from local edge operator,

e.g. image gradient)

Goal: Estimate U; given M.

Posterior: P(U|M) oc P(M|U)P(U)
Likelihood P(M|U): corruption model (noise and blur)

Prior probability P(U) | “bias” to overcome uncertainty
What's a prior for sketches?




Filtering
Linear Filters: Model: M = blur(U) + noise

Linear minimum mean square error estimate:
Requires second moments of U.

Quadratic and Higher-Order Filters:

Require higher moments of U.

Where do the moments come from?




Approach to Sketch Inference

0 L
[ L ]
Random Random indicator
arameterization Random set “Curve indicator
P t i R {R;:t€[0,L]} random field” U
o (Unknown sketch)
Y
Sketch
Filters

Eliminate curve parameterization by accumulating “ink”



Differential Geometry of Planar Curves

Curve with parameter se R:  C:s+— C(s) = (z(s),y(s)) € R?

Tangent vector =T = Hg:II’

where ¢ = (%, dy) !

Normal vector = N = rotateggoT’

Direction = 0: T = (cos#6,sinf)

Curvature Kk = 2—9
S



A Markov Process with Direction

Lift of curve: t — Ry = (z,y,0) t.__.>(.§t\




A Markov Process with Direction

Lift of curve: t — Ry = (z,vy,0)

Mumford’'s process with direction:

r=cosf y=-sinf 6O = noise

Developed by Williams, Jacobs, Thornber,

Zweck.
Green's function G = (gi;)

time spentin j
gi; = 4§ diven process
started in 2

Approximate continuous

space discretely: 7 = (x, vy, 0)



Curve Indicator Random Field

Discrete-space Markov process Ry =1 = (xz,y,0), t¢€[0,L]
Random length L ~ exponential(a™1)

1, if 2 is on the curve

Key intuition: Let V; = { 0. otherwise




Curve Indicator Random Field

Discrete-space Markov process Ry =i = (x,y,0), te€[0,L]
Random length L ~ exponential(a™1)

1, if 2 is on the curve

Key intuition: Let V; = { 0. otherwise

1, if condition true

1{condition} = { 0. otherwise

Definition: Curve indicator random field (1 curve):

L
VZ-::/O 1{R; = i}dt

= time spent by curve at position ¢ = (x,vy,0)



Curve Interactions

How are crossings represented?

Using parameterization:
- must check all t1,t> whether Ry, = Ry,
- global computation

Using CIRF:
- ink buildup occurs at crossings
- local computation: U?



T heoretical Result:

All Joint Moments
of the Curve Indicator Random Field

Claim (Single curve case):

Positions i1,...,1 € {(x,y,60)}

E[Vz‘l T Vik] X Z 95152 " " jk—17k

Sum over permutations jq1,--- ,J%
of ,,;1, . .. 7’% time spent in j
gi; =< given process
started in ¢

Sum over all moments gives Feynman-Kac formula.



A Sketch with Multiple Curves

Random number N of i.i.d. Markov processes Rgl),...,RISN) ~ Ry
Independent random lengths Ly, --- , Ly~ L

Take superposition of i.i.d. 1-curve CIRFs: Q@Z

Definition: Curve indicator random field (multiple curves):

N L
U, = 2_:1 /O 1{R™ = i}t

Claim: Cumulant{Uz-l, ceey Uzk} X Zgjle 95 10k
Sum over permutations j1,--- ,j; Of positions i1,:-- 1%

Corollary: The curve indicator random field is nhon-Gaussian.



Covariance of Curve Indicator Random Field
cov(U;,U;) o l9:5 + gji]

9ij (forwa I’d)

gji (backward)

(Integrated over 6 for display)



Covariance of
Curve Indicator Random Field

tHRt: (xayae)

“Ideal” edge correlations

with horizontal edge at center:

0 = 45°

0 = 22.5°
0 = 0°
0 = —22.5°

§ = —45°




Edge Correlations
Observed in Images

Original

image
6 = 22.5°
0 = 0°

0 = —22.5°




T he Need for Curvature

Edge correlations (integrated over 6)



T he Benefit of Curvature

C

Curvature *"tunes’” search window



A Markov Process with Curvature
Lift with curvature: t — Ry = (z,vy,0,k) (1)

Brownian motion in curvature:

T =cosf y=-sind 6=k Kk =noise

Most probable curve minimizes: o [ k2 4+ 38 [dt <«  Euler spiral

Fokker-Plank diffusion: 22 = Qp, where Q := Z-& — cos6Z — sin 9— — k% — o

Q: “kllled” Markov process ‘“‘generator”



A Markov Process with Curvature
Lift with curvature: t — Ry = (z,vy,0,k) (1)

Brownian motion in curvature:
t=cosf y=sinf 6=k Kk =noise

Most probable curve minimizes: « [ k2 4+ 5 [dt <«  Euler spiral

Fokker-Plank diffusion: 22 = Qp, where Q := Z-& — cos6Z — sin 9— —kE—a

Q: “kllled” Markov process ‘“generator”

Compare to direction process [Mumford]:
t=cosf y=-sinfh 6= noise

Most probable curve minimizes: « [k2 4+ 3 [dt «  Elastica

o

Fokker-Plank diffusion: 22 = Qp, where Q := %2

) - )
cose% — sin Ha—y —



Sketches Compared
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CIRF Samples With Direction Only




Sketches Compared

CIRF Samples Including Curvature



Curve Indicator Random Field Covariance with Curvature:

r F 4 F 4

KQ-



Moment Generating Functional

For (multi-curve) curve indicator random field U:

Eexp(c,U) = exp(u, N(G(c) — G)v),

where:
@@ = killed Markov process generator (e.g., direction or curvature process)
G = —Q != Green's function
G(¢) = —(Q+diage) ! = Green's function biased by ¢
pw = initial weighting
v = final weighting
N = average number of curves

Observe: Linear system.



Minimum Mean-Square Estimation of the CIRF

Bayes estimate: u(m) = arg miny E[loss(U, u)|m]

U = CIRF, m = measurements,

|OSS — mean-square error.

Y.

1




Minimum Mean-Square Estimation of the CIRF

Bayes estimate: u(m) = arg miny E[loss(U, u)|m]
U = CIRF, m = measurements, |OSS — mean-square error.

DL

Filter Output

Minimum mean square error estimate (MMSE) of U
Posterior mean of CIRF U (given measurements m)

Likelihood:

Assume Gaussian white noise, blur B, Poisson number of curves.




High-noise MMSE CIRF Volterra Filters

Assume no blur and white Gaussian noise, variance o4 = e 1.
High-noise limit: Take Taylor expansion of log normalizing constant
of posterior around ¢ = 0. (¢ = constant)

Low contour density n assumption.

i1 = p{1 - 2¢¢ + (Gm + G*m)}

(2 = p{1 - 2e¢ 4 362¢2 + €(1 — 2¢0)(Gm + G*m)
—|—62(G diagm Gm + Gm © G™m 4+ G* diagm G*m)}

3 = {1 — 2e¢ + 362¢2 — 43¢3
+e(1 — 2e¢ + 362¢2)(Gm + G*m)
+e2(1 — 2¢¢)(G diagm Gm + Gm © G*m + G* diagm G*m)
+e3(G diagm G diagm Gm 4+ G diagm Gm © G*m
+Gm © G* diagm G*m + G* diagm G* diagm G*m)}



Self-Avoiding Curves

Average Number of Returns for Markov Chains

100 N N . T T T T
R Line, x :

. Plane, (X,y) m—

Plane with Orientation, (x,y,theta)
Space, (x,y,2) :

10 ¢

Returns

0 500 1000 1500 2000 2500
Average Length

- Derivation based on diagrams similar to Feynman diagrams

G G" G"
a o—p—x b: O—4—X—4—X C: . _
r i l {1,k

r i j r

- Many diagrams produce negligible terms due to self-avoidance



MMSE CIRF Filtering via Nonlinear PDEs

Assume Gaussian white noise, blur B, Poisson number of curves.

Goal:
Filter Output = Posterior mean of CIRF U (given measurements M)

Exact prior + approximate likelihood
— biased CIRF approximation of posterior mean:

(Q + diagd) f = const Forward PDE
(Q* + diagd) b = const Backward PDE
d = eB*(M — B(f ®b))

Filter Output; = f;b; = K, U;

Q = killed Markov process generator

— Reaction-diffusion-convection equation



Effect of Filters in (x,vy,0)
Gradint Logca]near Linear Cubic

magnitude response CIRF filter CIRF filter
Nonlinear CIRF PDE filter: Noise Result

(Result is function of (z,y,0). Integrated over 0 for display.)



Pick Up Sticks







Original (No corruption) Wlth Blur and N0|se

Thresholdini of Filter Output

Canny:
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Original

Linear

Quadratic

Cubic

Filter Response Thresholding



Finding a Ship’s Wake

Image Linear

Responses



Finding a Surgical Guide Wire
e B =

Local
Responses

Linear Quadratic Cubic
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Filtering with Curvature

o

1
¥

Direction CIRF Output (z,y,0)

Curvature CIRF Output (z,y,0, k) - |
NN
« "HEHNNEENN
Direction CIRF : ! | 1 B i B | .
s 1 11 11
. OO 900

180° 270°

AEETesy @

LT

OrigiHaI

Curvature CIRF



Filtering an Euler Spiral

Direction CIRF Curvature CIRF
Filtered Filtered



Prostate Enhancement

Original Edges before Edges after
cubic CIRF filter



Conclusions

e Differential Geometry: Stochastic Model of Contour Curvature

e Inference: Posterior Mean Filter using nonlinear PDEs

e Curve Indicator Random Field as:
— Sketch (Ideal Edge Map)

— Abstraction for Eliminating Curve Parameterization



